2022-02-24 08:23

布洛赫波

布洛赫定理的证明

给出平移算符 criptlevel="0"> T ^ R n {\displaystyle {\hat {T}}_{{\boldsymbol {R}}_{n}}} ,并定义其作用为对任意函数 criptlevel="0"> f ( r ) {\displaystyle f({\boldsymbol {r}})} 有:

criptlevel="0"> T ^ R n f ( r ) = f ( r + R n ) {\displaystyle {\hat {T}}_{{\boldsymbol {R}}_{n}}f({\boldsymbol {r}})=f({\boldsymbol {r}}+{\boldsymbol {R}}_{n})}

其中 criptlevel="0"> R n {\displaystyle {\boldsymbol {R}}_{n}} 是布拉维格子的任意矢量。

由于晶格周期势的周期性,不难得到晶格哈密顿量具有平移对称性:

criptlevel="0"> H ^ ( r + R n ) = H ^ ( r ) {\displaystyle {\hat {H}}({\boldsymbol {r}}+{\boldsymbol {R}}_{n})={\hat {H}}({\boldsymbol {r}})}

所以有:

criptlevel="0"> T ^ R n H ^ ψ ( r ) = H ^ ( r + R n ) ψ ( r + R n ) = H ^ ( r ) ψ ( r + R n ) = H ^ T ^ R n ψ ( r ) {\displaystyle {\hat {T}}_{{\boldsymbol {R}}_{n}}{\hat {H}}\psi ({\boldsymbol {r}})={\hat {H}}({\boldsymbol {r}}+{\boldsymbol {R}}_{n})\psi ({\boldsymbol {r}}+{\boldsymbol {R}}_{n})={\hat {H}}({\boldsymbol {r}})\psi ({\boldsymbol {r}}+{\boldsymbol {R}}_{n})={\hat {H}}{\hat {T}}_{{\boldsymbol {R}}_{n}}\psi ({\boldsymbol {r}})}

即此时哈密顿量算符与平移算符是对易的,从而它们具有共同的本征函数,因此可讨论 criptlevel="0"> H ^ {\displaystyle {\hat {H}}} 的本征函数来代替对 criptlevel="0"> T ^ R n {\displaystyle {\hat {T}}_{{\boldsymbol {R}}_{n}}} 本征函数的讨论。

criptlevel="0"> ψ ( r ) {\displaystyle \psi ({\boldsymbol {r}})} 为这两个算符的共同本征函数, criptlevel="0"> λ R n {\displaystyle \lambda _{{\boldsymbol {R}}_{n}}} 是对应本征值,那么有:

criptlevel="0"> T ^ R n ψ ( r ) = ψ ( r + R n ) = λ R n ψ ( r ) {\displaystyle {\hat {T}}_{{\boldsymbol {R}}_{n}}\psi ({\boldsymbol {r}})=\psi ({\boldsymbol {r}}+{\boldsymbol {R}}_{n})=\lambda _{{\boldsymbol {R}}_{n}}\psi ({\boldsymbol {r}})}

波函数的归一化条件:

criptlevel="0"> | ψ ( r ) | 2 d r = | ψ ( r + R n ) | 2 d r = 1 {\displaystyle \int |\psi ({\boldsymbol {r}})|^{2}{\text{d}}{\boldsymbol {r}}=\int |\psi ({\boldsymbol {r}}+{\boldsymbol {R}}_{n})|^{2}{\text{d}}{\boldsymbol {r}}=1}

要求 criptlevel="0"> | λ R n | 2 = 1 {\displaystyle |\lambda _{{\boldsymbol {R}}_{n}}|^{2}=1} ,即本征值的形式应为:

criptlevel="0"> λ R n = e i β R n {\displaystyle \lambda _{{\boldsymbol {R}}_{n}}=e^{i\beta _{{\boldsymbol {R}}_{n}}}}

除此之外,平移算符还要满足 criptlevel="0"> T ^ R n T ^ R m ψ = λ R m λ R n ψ = T ^ R n + R m ψ = λ R n + R m ψ {\displaystyle {\hat {T}}_{{\boldsymbol {R}}_{n}}{\hat {T}}_{{\boldsymbol {R}}_{m}}\psi =\lambda _{{\boldsymbol {R}}_{m}}\lambda _{{\boldsymbol {R}}_{n}}\psi ={\hat {T}}_{{\boldsymbol {R}}_{n}+{\boldsymbol {R}}_{m}}\psi =\lambda _{{\boldsymbol {R}}_{n}+{\boldsymbol {R}}_{m}}\psi } ,即平移算符本征值要满足关系:

criptlevel="0"> λ R n + R m = λ R m λ R n {\displaystyle \lambda _{{\boldsymbol {R}}_{n}+{\boldsymbol {R}}_{m}}=\lambda _{{\boldsymbol {R}}_{m}}\lambda _{{\boldsymbol {R}}_{n}}}

将之前推导得到的 criptlevel="0"> λ R n = e i β R n {\displaystyle \lambda _{{\boldsymbol {R}}_{n}}=e^{i\beta _{{\boldsymbol {R}}_{n}}}} 带入上式中,有:

criptlevel="0"> β R n + R m = β R n + β R m {\displaystyle \beta _{{\boldsymbol {R}}_{n}+{\boldsymbol {R}}_{m}}=\beta _{{\boldsymbol {R}}_{n}}+\beta _{{\boldsymbol {R}}_{m}}}

由此可知, criptlevel="0"> β {\displaystyle \beta } criptlevel="0"> R n {\displaystyle {\boldsymbol {R}}_{n}} 必须成正比关系,所以可设 criptlevel="0"> β R n = k R n {\displaystyle \beta _{{\boldsymbol {R}}_{n}}={\boldsymbol {k}}\cdot {\boldsymbol {R}}_{n}} ,从而:

criptlevel="0"> λ R n = e i k R n {\displaystyle \lambda _{{\boldsymbol {R}}_{n}}=e^{i{\boldsymbol {k}}\cdot {\boldsymbol {R}}_{n}}}

因此证明了对任意的布拉维格矢 criptlevel="0"> R n {\displaystyle {\boldsymbol {R}}_{n}} 其本征波函数有如下关系:

criptlevel="0"> ψ ( r + R n ) = T ^ R n ψ ( r ) = λ R n ψ ( r ) = e i k R n ψ ( r ) {\displaystyle \psi ({\boldsymbol {r}}+{\boldsymbol {R}}_{n})={\hat {T}}_{{\boldsymbol {R}}_{n}}\psi ({\boldsymbol {r}})=\lambda _{{\boldsymbol {R}}_{n}}\psi ({\boldsymbol {r}})=e^{i{\boldsymbol {k}}\cdot {\boldsymbol {R}}_{n}}\psi ({\boldsymbol {r}})}

此即布洛赫定理。

参见
  • K·p微扰论
  • 轨道磁化英语Orbital magnetization
  • Hannay角英语Hannay angle
  • 几何相位

相关推荐